skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mobayenjarihani, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Noise and photon loss encountered on quantum channels pose a major challenge for reliable entanglement generation in quantum networks. In near-term networks, heralding is required to inform endpoints of successfully generated entanglement. If after heralding, entanglement fidelity is too low, entanglement purification may be utilized to probabilistically increase fidelity. Traditionally, purification protocols proceed as follows: generate heralded EPR pairs, execute a series of quantum operations on two or more pairs between two nodes, and classically communicate results to check for success. Purification may require several rounds while qubits are stored in memories, vulnerable to decoherence. In this work, we explore notions of optimistic purification, wherein classical communication required for heralding and purification is delayed, possibly to the end of the process. Optimism reduces the overall time EPR pairs are stored in memory, increasing fidelity while possibly decreasing EPR pair rate due to decreased heralding and purification failure. We apply optimism to the entanglement pumping scheme, ground- and satellite-based EPR generation sources, and current state-of-the-art purification circuits that include several measurement and purification checkpoints. We evaluate performance in view of a number of parameters, including link length, EPR source rate and fidelity; and memory coherence time. We show that while our optimistic protocol increases fidelity, the traditional approach may even decrease fidelity for longer distances. We study the trade-off between rate and fidelity under entanglement-based QKD, and find that optimistic schemes can yield higher rates compared to non-optimistic counterparts, with most advantages seen in scenarios with low initial fidelity and short coherence times. 
    more » « less